はじめに
境界層内における伝熱が気になった.そこで基礎的な話から復習する.熱的な話に入る前に,まずは流速について考えてみる.高速流に発展させていくため圧縮性流体として議論を進める.
例題:境界層における速度場
基礎方程式
下準備として,基礎方程式並びに必要な関係式を列記する.圧縮性流体であることに注意.
連続の式: $$ \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0 $$
ナビエストークス方程式(境界層方程式): $$ \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = - \frac{\rm{d} \it{p_e}}{\rm{d} \it{x}} + \frac{\partial }{\partial y} \left( \mu \frac{\partial u}{\partial y}\right) $$ $$ \frac{\partial p}{\partial y} = 0 $$
座標変換の準備
速度場とエンタルピー場に関して,相似形のプロファイルを見出したいというモチベーションがある.これはそもそも, 「相似形のプロファイルが出現するには相似的な法則があると推測でき,そこには何らかの物理現象物理法則が存在する(そして物理学がさらに発展し人類に貢献できる).」という物理学的な性質?によるものだと解釈している. そこで,以下の座標変換(イリングワース変換:Illingworth transformation)を適応する.
座標系の変換: $$ \xi = \int^x_0{\rho_e u_e \mu_e} \rm{d}\it{x} $$ $$ \eta = \frac{u_e}{\sqrt{2\xi}}\int^y_0{\rho} \rm{d}\it{y} $$
次に,チェーンルールに基づいた微分におけるの変形の下準備をしておくと,
微分の準備: $$ \frac{\partial \xi}{\partial x} = \rho_e u_e \mu_e $$ $$ \frac{\partial \xi}{\partial y} = 0 $$ $$ \frac{\partial \eta}{\partial x} = ??? (計算過程でキャンセルアウトされる) $$ $$ \frac{\partial \eta}{\partial y} = \frac{u_e \rho}{\sqrt{2\xi}} $$
チェーンルールを適応して,$x$-方向: $$ \frac{\partial}{\partial x} = \left(\frac{\partial}{\partial \xi}\right) \left(\frac{\partial \xi}{\partial x}\right) + \left(\frac{\partial}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial x}\right) = \left(\frac{\partial}{\partial \xi}\right) \rho_e u_e \mu_e + \left(\frac{\partial}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial x}\right) $$ $$ \therefore \frac{\partial}{\partial x} = \rho_e u_e \mu_e \frac{\partial}{\partial \xi} + \left(\frac{\partial \eta}{\partial x}\right) \frac{\partial}{\partial \eta} $$
$y$-方向: $$ \frac{\partial}{\partial y} = \left(\frac{\partial}{\partial \xi}\right) \left(\frac{\partial \xi}{\partial y}\right) + \left(\frac{\partial}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial y}\right) = \left(\frac{\partial}{\partial \xi}\right) 0 + \left(\frac{\partial}{\partial \eta}\right) \frac{u_e \rho}{\sqrt{2\xi}} $$ $$ \therefore \frac{\partial}{\partial y} = \frac{u_e \rho}{\sqrt{2\xi}} \frac{\partial}{\partial \eta} $$ となる.
流れ関数による表記
次のように流れ関数$\varPsi$を導入しする.当然だが,連続の式を満たす.流れ関数: $$ \frac{\partial \varPsi}{\partial y} = \rho u $$ $$ \frac{\partial \varPsi}{\partial x} = - \rho v $$
これらを境界層方程式に代入して,$\varPsi$で表すと,境界層方程式: $$ \frac{\partial \varPsi}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial \varPsi}{\partial x} \frac{\partial u}{\partial y} = - \frac{\rm{d} \it{p_e}}{\rm{d} \it{x}} + \frac{\partial }{\partial y} \left( \mu \frac{\partial u}{\partial y}\right) $$
ここで$\xi - \eta$ 座標系に置き換えて, $$ \left[ \frac{u_e \rho}{\sqrt{2\xi}} \frac{\partial \varPsi}{\partial \eta} \right] \left[ \rho_e u_e \mu_e \frac{\partial u}{\partial \xi} + \left(\frac{\partial \eta}{\partial x} \right) \frac{\partial u}{\partial \eta} \right] + \left[ \rho_e u_e \mu_e \frac{\partial \varPsi}{\partial \xi} + \left(\frac{\partial \eta}{\partial x} \right) \frac{\partial \varPsi}{\partial \eta} \right] \left[ \frac{u_e \rho}{\sqrt{2 \xi}} \frac{\partial u}{\partial \eta} \right] = - \rho_e u_e \mu_e \frac{\rm{d} \it{p_e}}{\rm{d} \it{\xi}} + \frac{u_e \rho}{\sqrt{2 \xi}} \frac{\partial }{\partial \eta} \left( \frac{u_e \rho \mu}{\sqrt{2 \xi}} \frac{\partial u}{\partial \eta}\right) $$
$\sqrt{2 \xi} / u_e \rho$ を辺々にかけて, $$ \frac{\partial \varPsi}{\partial \eta} \left[ \rho_e u_e \mu_e \frac{\partial u}{\partial \xi} + \left(\frac{\partial \eta}{\partial x} \right) \frac{\partial u}{\partial \eta} \right] + \left[ \rho_e u_e \mu_e \frac{\partial \varPsi}{\partial \xi} + \left(\frac{\partial \eta}{\partial x} \right) \frac{\partial \varPsi}{\partial \eta} \right] \frac{\partial u}{\partial \eta} = - \sqrt{2 \xi} \frac{\rho_e}{\rho} \mu_e \frac{\rm{d} \it{p_e}}{\rm{d} \it{\xi}} + \frac{\partial }{\partial \eta} \left( \frac{u_e \rho \mu}{\sqrt{2 \xi}} \frac{\partial u}{\partial \eta}\right) $$ 以上より,$\xi - \eta$ 座標系における境界層方程式が得られた(多少残った$x-y$座標の項は後述で処理).
プロファイル$f$の導入
$u$のプロファイルを $$ \frac{u}{u_e} = \frac{\partial f}{\partial \eta} = f' $$ と定義する.注意:微分記号 $'$ は $\eta$ の微分である.
$\xi - \eta$ 座標での微分を行うと, $$ \frac{\partial u}{\partial \xi} = \frac{\partial (f' u_e)}{\partial \xi} = f' \frac{\partial u_e}{\partial \xi} + u_e \frac{\partial (f')}{\partial \xi} = f' \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + u_e \frac{\partial (f')}{\partial \xi} (\because u_e = u_e(\xi)) $$ $$ \frac{\partial u}{\partial \eta} = \frac{\partial }{\partial \eta} \left( u_e \frac{\partial f}{\partial \eta} \right) = u_e \frac{\partial^2 f}{\partial {\eta}^2} = u_e f'' $$
次に,$\varPsi$ と $f$ の関係を導出する.$$ \left( \frac{\partial \varPsi}{\partial y} = \right) \frac{u_e \rho}{\sqrt{2\xi}} \frac{\partial \varPsi}{\partial \eta} = \rho u = \rho f' u_e $$ $$ \therefore \frac{\partial \varPsi}{\partial \eta} = \sqrt{2\xi} f' $$
$\eta$で積分して, $$ \varPsi = \sqrt{2\xi} f + F(\xi) $$ ただし,$F(\xi)$任意関数であるが,流れ関数の一般的な特性(壁面で流体の流出入なし)から,$\varPsi$に関して,$\varPsi(\xi,\eta=0) = 0$となる.上記の方程式において,$\eta=0$の任意の点において,$\varPsi=0$を満たすには, $f=0$かつ$F(\xi)=0$となる必要がある.ゆえに, $F(\xi)=0$として,元の方程式は, $$ \varPsi = \sqrt{2\xi} f $$
$$ \frac{\partial \varPsi}{\partial \xi} = \frac{\partial (\sqrt{2\xi} f)}{\partial \xi} = \sqrt{2\xi} \frac{\partial f}{\partial \xi} + \frac{1}{\sqrt{2\xi}} f $$ となる.
プロファイル$f$による表記
境界層方程式を再掲. $$ \color{red}{ \frac{\partial \varPsi}{\partial \eta} } \left[ \rho_e u_e \mu_e \color{red}{ \frac{\partial u}{\partial \xi} } + \left(\frac{\partial \eta}{\partial x} \right) \color{red}{ \frac{\partial u}{\partial \eta} } \right] + \left[ \rho_e u_e \mu_e \color{red}{ \frac{\partial \varPsi}{\partial \xi} } + \left(\frac{\partial \eta}{\partial x} \right) \color{red}{ \frac{\partial \varPsi}{\partial \eta} } \right] \color{red}{ \frac{\partial u}{\partial \eta} } = - \sqrt{2 \xi} \frac{\rho_e}{\rho} \mu_e \frac{\rm{d} \it{p_e}}{\rm{d} \it{\xi}} + \frac{\partial }{\partial \eta} \left( \frac{u_e \rho \mu}{\sqrt{2 \xi}} \color{red}{ \frac{\partial u}{\partial \eta} } \right) $$
上記の赤字に代入して, $$ \sqrt{2\xi} f' \left[ \rho_e u_e \mu_e \left( f' \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + u_e \frac{\partial (f')}{\partial \xi} \right) + \left(\frac{\partial \eta}{\partial x} \right) u_e f'' \right] - \left[ \rho_e u_e \mu_e \left( \sqrt{2\xi} \frac{\partial f}{\partial \xi} + \frac{1}{\sqrt{2\xi}} f \right) + \left(\frac{\partial \eta}{\partial x} \right) \sqrt{2\xi} f' \right] u_e f'' \\ = - \sqrt{2 \xi} \frac{\rho_e}{\rho} \mu_e \frac{\rm{d} \it{p_e}}{\rm{d} \it{\xi}} + \frac{\partial }{\partial \eta} \left( \frac{u_e^2 \rho \mu}{\sqrt{2 \xi}} f'' \right) $$
ここで,境界層縁での非粘性流に関してオイラー方程式より, $$ \rm{d} \it{p_e} = - \rho_e u_e \rm{d} \it{u_e} $$ であり,これを代入して,さらに辺々 $\sqrt{2 \xi} \rho_e u_e^2 \mu_e$ で割ると, $$ \frac{1}{u_e} f' \left[ \left( f' \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + u_e \frac{\partial (f')}{\partial \xi} \right) + \cancel{ \left(\frac{\partial \eta}{\partial x} \right) f'' } \right] - \left[ \left( \frac{\partial f}{\partial \xi} + \frac{1}{2\xi} f \right) + \cancel{ \frac{1}{u_e} \left(\frac{\partial \eta}{\partial x} \right) f' } \right] f'' = - \frac{\rho_e}{\rho} \frac{1}{u_e} \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + \frac{\partial }{\partial \eta} \left( \frac{1}{2 \xi} \frac{\rho \mu}{\rho_e \mu_e} f'' \right) $$
整理して, $$ \frac{1}{u_e} \left( f' \right)^2 \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + f' \frac{\partial (f')}{\partial \xi} - \frac{\partial f}{\partial \xi} f'' + \frac{1}{2\xi} f f'' = - \frac{\rho_e}{\rho} \frac{1}{u_e} \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + \frac{\partial }{\partial \eta} \left( \frac{1}{2 \xi} \frac{\rho \mu}{\rho_e \mu_e} f'' \right) $$
下記のような色分けで項を区別する. $$ \color{green}{\frac{1}{u_e} \left( f' \right)^2 \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}}} + \color{pink}{f' \frac{\partial (f')}{\partial \xi}} - \color{pink}{\frac{\partial f}{\partial \xi} f''} + \color{blue}{\frac{1}{2\xi} f f''} = - \color{green}{\frac{\rho_e}{\rho} \frac{1}{u_e} \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}}} + \color{red}{\frac{\partial }{\partial \eta} \left( \frac{1}{2 \xi} \frac{\rho \mu}{\rho_e \mu_e} f'' \right)} $$
移行して, $$ \frac{\partial }{\partial \eta} \left( \frac{1}{2 \xi} \frac{\rho \mu}{\rho_e \mu_e} f'' \right) + \frac{1}{2\xi} f f'' = \left[ \frac{1}{u_e} \left( f' \right)^2 - \frac{\rho_e}{\rho} \frac{1}{u_e} \right]\frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + f' \frac{\partial (f')}{\partial \xi} - \frac{\partial f}{\partial \xi} f'' $$
辺々に,$2\xi$ を掛けて,$C \equiv \frac{\rho \mu}{\rho_e \mu_e}$とすると, $$ \frac{\partial }{\partial \eta} \left( C f'' \right) + f f'' = \frac{2\xi}{u_e} \left[ \left( f' \right)^2 - \frac{\rho_e}{\rho} \right]\frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + 2\xi \left( f' \frac{\partial (f')}{\partial \xi} - \frac{\partial f}{\partial \xi} f'' \right) $$ ゆえに, $$ \left( C f'' \right)' + f f'' = \frac{2\xi}{u_e} \left[ \left( f' \right)^2 - \frac{\rho_e}{\rho} \right]\frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} + 2\xi \left( f' \frac{\partial (f')}{\partial \xi} - \frac{\partial f}{\partial \xi} f'' \right) $$ 以上より,速度$u$のプロファイル$f$を導入した境界層方程式が得られた.
本題:温度場とエンタルピー
基礎方程式
エネルギー保存則: $$ \rho u \frac{\partial h}{\partial x} + \rho v \frac{\partial h}{\partial y} = \frac{\partial}{\partial y} \left( k \frac{\partial T}{\partial y} \right) + u \frac{\rm{d} \it{p_e}}{\rm{d} \it{x}} + \mu \left(\frac{\partial u}{\partial y}\right)^2 $$
理想気体: $$ p = \rho R T $$
エンタルピー: $$ h = c_p T $$
続きはそのうち.プロファイル$g$の導入
$h$のプロファイルを $$ \frac{h}{h_e} = g(\xi.\eta)= g $$ と定義する.
微分の準備: $$ \frac{\partial \xi}{\partial x} = \rho_e u_e \mu_e $$ $$ \frac{\partial \xi}{\partial y} = 0 $$ $$ \frac{\partial \eta}{\partial x} = ??? (計算過程でキャンセルアウトされる) $$ $$ \frac{\partial \eta}{\partial y} = \frac{u_e \rho}{\sqrt{2\xi}} $$
$\xi - \eta$ 座標での微分を行うと, $$ \frac{\partial h}{\partial \xi} = \frac{\partial (g' h_e)}{\partial \xi} = g \frac{\partial h_e}{\partial \xi} + h_e \frac{\partial g}{\partial \xi} = g \frac{\rm{d} \it{h_e}}{\rm{d} \it{\xi}} + h_e \frac{\partial g}{\partial \xi} (\because h_e = h_e(\xi)) $$ $$ \frac{\partial h}{\partial \eta} = \frac{\partial }{\partial \eta} \left( h_e g \right) = h_e \frac{\partial g}{\partial \eta} = h_e g' $$
チェーンルールを適応して,$x$-方向: $$ \frac{\partial h}{\partial x} \\ = \left(\frac{\partial h}{\partial \xi}\right) \left(\frac{\partial \xi}{\partial x}\right) + \left(\frac{\partial h}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial x}\right) \\ = \left(\frac{\partial h}{\partial \xi}\right) \rho_e u_e \mu_e + \left(\frac{\partial h}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial x}\right) \\ = \left(g \frac{\rm{d} \it{h_e}}{\rm{d} \it{\xi}} + h_e \frac{\partial g}{\partial \xi} \right) \rho_e u_e \mu_e + \left( h_e g' \right) \left( \frac{\partial \eta}{\partial x} \right) $$
$y$-方向: $$ \frac{\partial h}{\partial y} \\ = \left(\frac{\partial h}{\partial \xi}\right) \left(\frac{\partial \xi}{\partial y}\right) + \left(\frac{\partial h}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial y}\right) \\ = \left(\frac{\partial h}{\partial \xi}\right) \left( 0 \right) + \left(\frac{\partial h}{\partial \eta}\right) \left( \frac{u_e \rho}{\sqrt{2\xi}} \right) \\ = \left( h_e g' \right) \frac{u_e \rho}{\sqrt{2\xi}} $$ となる.
流れ関数: $$ \rho u = \frac{\partial \varPsi}{\partial y} \\ = \left(\frac{\partial \varPsi}{\partial \xi}\right) \left(\frac{\partial \xi}{\partial y}\right) + \left(\frac{\partial \varPsi}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial y}\right) \\ = \left( \sqrt{2\xi} f' \right) \left( 0 \right) + \left( \sqrt{2\xi} \frac{\partial f}{\partial \xi} + \frac{1}{\sqrt{2\xi}} f \right) \left( \frac{u_e \rho}{\sqrt{2\xi}} \right) \\ = \left( u_e \rho \frac{\partial f}{\partial \xi} + \frac{u_e \rho}{2\xi} f \right) $$ $$ \rho v = - \frac{\partial \varPsi}{\partial x} \\ = - \left(\frac{\partial \varPsi}{\partial \xi}\right) \left(\frac{\partial \xi}{\partial x}\right) - \left(\frac{\partial \varPsi}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial x}\right) \\ = - \left( \sqrt{2\xi} f' \right) \left( \rho_e u_e \mu_e \right) - \left( \sqrt{2\xi} \frac{\partial f}{\partial \xi} + \frac{1}{\sqrt{2\xi}} f \right) \left(\frac{\partial \eta}{\partial x}\right) \\ = - \sqrt{2\xi} \left( \rho_e u_e \mu_e f' + \frac{\partial f}{\partial \xi} \frac{\partial \eta}{\partial x} + \frac{1}{2\xi} f \frac{\partial \eta}{\partial x} \right) $$
オイラー方程式より, $$ \rm{d} \it{p_e} = - \rho_e u_e \rm{d} \it{u_e} $$
$y$-方向: $$ \frac{\partial u}{\partial y} \\ = \left(\frac{\partial u}{\partial \xi}\right) \left(\frac{\partial \xi}{\partial y}\right) + \left(\frac{\partial u}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial y}\right) \\ = \left(\frac{\partial u}{\partial \xi}\right) \left( 0 \right) + \left(\frac{\partial u}{\partial \eta}\right) \frac{u_e \rho}{\sqrt{2\xi}} \\ = \frac{u_e \rho}{\sqrt{2\xi}} \frac{\partial u_e f'}{\partial \eta} \\ = \frac{u_e \rho}{\sqrt{2\xi}} u_e f'' $$ となる
熱伝導の候に関して: $$ \frac{\partial T}{\partial y} \\ = \left(\frac{\partial T}{\partial \xi}\right) \left(\frac{\partial \xi}{\partial y}\right) + \left(\frac{\partial T}{\partial \eta}\right) \left(\frac{\partial \eta}{\partial y}\right) \\ = \left(\frac{\partial T}{\partial \xi}\right) \left( 0 \right) + \left(\frac{\partial T}{\partial \eta}\right) \frac{u_e \rho}{\sqrt{2\xi}} \\ = \left(\frac{\partial T}{\partial \eta}\right) \frac{u_e \rho}{\sqrt{2\xi}} \\ = \left(\frac{\partial (h/c_p)}{\partial \eta}\right) \frac{u_e \rho}{\sqrt{2\xi}} \\ = \left(\frac{\partial h}{\partial \eta}\right) \frac{u_e \rho}{c_p \sqrt{2\xi}} \\ = \left(\frac{\partial (h_e g)}{\partial \eta}\right) \frac{u_e \rho}{c_p \sqrt{2\xi}} \\ = \left( \left(\frac{\partial h_e}{\partial \eta}\right) g + h_e \left(\frac{\partial g}{\partial \eta}\right) \right) \frac{u_e \rho}{c_p \sqrt{2\xi}} \\ = \left( \frac{\partial h_e}{\partial \eta} g + h_e g' \right) \frac{u_e \rho}{c_p \sqrt{2\xi}} $$ $$ \frac{\partial }{\partial y} \left( \frac{\partial T}{\partial y} \right) \\ = \frac{\partial}{\partial \eta} \left( \frac{\partial T}{\partial y} \right) \frac{u_e \rho}{\sqrt{2\xi}} \\ = \frac{\partial}{\partial \eta} \left( \left( \frac{\partial h_e}{\partial \eta} g + h_e g' \right) \frac{u_e \rho}{c_p \sqrt{2\xi}} \right) \frac{u_e \rho}{\sqrt{2\xi}} \\ = \frac{\partial}{\partial \eta} \left( \left( \frac{\partial h_e}{\partial \eta} g + h_e g' \right) \frac{u_e \rho}{c_p \sqrt{2\xi}} \right) \frac{u_e \rho}{\sqrt{2\xi}} \\ = \left( \frac{\partial^2 h_e}{\partial \eta^2} g + \frac{\partial h_e}{\partial \eta} \frac{\partial g}{\partial \eta} + \frac{\partial h_e}{\partial \eta} \frac{\partial g}{\partial \eta} + \frac{\partial g'}{\partial \eta} \right) \frac{u_e^2 \rho^2}{c_p 2\xi} \\ = \left( \frac{\partial^2 h_e}{\partial \eta^2} g + 2 \frac{\partial h_e}{\partial \eta} g' + g'' \right) \frac{u_e^2 \rho^2}{c_p 2\xi} $$
エネルギー保存則: $$ \rho u \frac{\partial h}{\partial x} + \rho v \frac{\partial h}{\partial y} = \frac{\partial}{\partial y} \left( k \frac{\partial T}{\partial y} \right) + u \frac{\rm{d} \it{p_e}}{\rm{d} \it{x}} + \mu \left(\frac{\partial u}{\partial y}\right)^2 $$ 上述の変数を代入して, $$ \left[ \left( u_e \rho \frac{\partial f}{\partial \xi} + \frac{u_e \rho}{2\xi} f \right) \right] \left[ \left(g \frac{\rm{d} \it{h_e}}{\rm{d} \it{\xi}} + h_e \frac{\partial g}{\partial \xi} \right) \rho_e u_e \mu_e + \left( h_e g' \right) \left( \frac{\partial \eta}{\partial x} \right) \right] + \left[ - \sqrt{2\xi} \left( \rho_e u_e \mu_e f' + \frac{\partial f}{\partial \xi} \frac{\partial \eta}{\partial x} + \frac{1}{2\xi} f \frac{\partial \eta}{\partial x} \right) \right] \left[ \left( h_e g' \right) \frac{u_e \rho}{\sqrt{2\xi}} \right] \\ = \left[ k \left( \frac{\partial^2 h_e}{\partial \eta^2} g + 2 \frac{\partial h_e}{\partial \eta} g' + g'' \right) \frac{u_e^2 \rho^2}{c_p 2\xi} \right] + \left[ u_e f' \left( - \rho_e u_e \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} \right) \right] + \left[ \mu \left( \frac{u_e \rho}{\sqrt{2\xi}} u_e f'' \right)^2 \right] $$ ここでじっくり見ると$\frac{\partial \eta}{\partial x}$の項はキャンセルアウトされる. $$ \left[ \left( u_e \rho \frac{\partial f}{\partial \xi} + \frac{u_e \rho}{2\xi} f \right) \right] \left[ \left(g \frac{\rm{d} \it{h_e}}{\rm{d} \it{\xi}} + h_e \frac{\partial g}{\partial \xi} \right) \rho_e u_e \mu_e + \cancel{ \left( h_e g' \right) \left( \frac{\partial \eta}{\partial x} \right) } \right] + \left[ - \sqrt{2\xi} \left( \rho_e u_e \mu_e f' + \cancel{ \frac{\partial f}{\partial \xi} \frac{\partial \eta}{\partial x} + \frac{1}{2\xi} f \frac{\partial \eta}{\partial x} } \right) \right] \left[ \left( h_e g' \right) \frac{u_e \rho}{\sqrt{2\xi}} \right] \\ = \left[ k \left( \frac{\partial^2 h_e}{\partial \eta^2} g + 2 \frac{\partial h_e}{\partial \eta} g' + g'' \right) \frac{u_e^2 \rho^2}{c_p 2\xi} \right] + \left[ u_e f' \left( - \rho_e u_e \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} \right) \right] + \left[ \mu \left( \frac{u_e \rho}{\sqrt{2\xi}} u_e f'' \right)^2 \right] $$ ゆえに整理して, $$ \left( u_e \rho \frac{\partial f}{\partial \xi} + \frac{u_e \rho}{2\xi} f \right) \left(g \frac{\rm{d} \it{h_e}}{\rm{d} \it{\xi}} + h_e \frac{\partial g}{\partial \xi} \right) \rho_e u_e \mu_e - \sqrt{2\xi} \left( \rho_e u_e \mu_e f' \right) \left( h_e g' \right) \frac{u_e \rho}{\sqrt{2\xi}} \\ = k \left( \frac{\partial^2 h_e}{\partial \eta^2} g + 2 \frac{\partial h_e}{\partial \eta} g' + g'' \right) \frac{u_e^2 \rho^2}{c_p 2\xi} + u_e f' \left( - \rho_e u_e \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} \right) + \mu \left( \frac{u_e \rho}{\sqrt{2\xi}} u_e f'' \right)^2 $$ $C \equiv \rho \mu / \rho_e \mu_e$であり,さらに辺々 ${2 \xi} / {\rho \rho_e u_e^2 \mu_e h_e}$ を掛けると, $$ \left[ \left( u_e \rho \frac{\partial f}{\partial \xi} + \frac{u_e \rho}{2\xi} f \right) \right] \left[ \left(g \frac{\rm{d} \it{h_e}}{\rm{d} \it{\xi}} + h_e \frac{\partial g}{\partial \xi} \right) \rho_e u_e \mu_e + \left( h_e g' \right) \left( \frac{\partial \eta}{\partial x} \right) \right] + \left[ - \sqrt{2\xi} \left( \rho_e u_e \mu_e f' + \frac{\partial f}{\partial \xi} \frac{\partial \eta}{\partial x} + \frac{1}{2\xi} f \frac{\partial \eta}{\partial x} \right) \right] \left[ \left( h_e g' \right) \frac{u_e \rho}{\sqrt{2\xi}} \right] \\ = \left[ k \left( \frac{\partial^2 h_e}{\partial \eta^2} g + 2 \frac{\partial h_e}{\partial \eta} g' + g'' \right) \frac{u_e^2 \rho^2}{c_p 2\xi} \right] + \left[ u_e f' \left( - \rho_e u_e \frac{\rm{d} \it{u_e}}{\rm{d} \it{\xi}} \right) \right] + \left[ C \frac{u_e^2}{h_e} \left(f'' \right)^2 \right] $$
参考図書
John D. Anderson Jr., "Hypersonic and high-temperature gas dynamics", AIAA, 3rd Ed.(2019)
神元五郎,"機械工学大系10 高速流動",コロナ社,1976
近藤次郎,"高速空気力学",コロナ社,1977
日野幹雄,"理工学基礎講座16 流体力学",朝倉書店,1974
日野幹雄,"流体力学",朝倉書店,1992
巽友正,"新物理学シリーズ21 流体力学",培風館,1982